Ideals with bases of unbounded Borel complexity

Szymon Głąb, Piotr Borodulin-Nadzieja

< ∃ →

э

Table of contents

< ∃ >

-

Let \mathcal{I} be a σ -ideal. $\mathcal{M}(\mathcal{I}) = \{A \in X \times X : \exists B \supset A, B \text{ Borel}, B_x \in \mathcal{I}\}$

 $\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ -ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma^{0}_{\alpha}$.

Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I}) = \bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski

If $\mathcal{I} = \mathcal{M}eager$ or $\mathcal{I} = \mathcal{N}ull$, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$.

э

Let \mathcal{I} be a σ -ideal. $\mathcal{M}(\mathcal{I}) = \{A \in X \times X : \exists B \supset A, B \text{ Borel}, B_x \in \mathcal{I}\}$

$\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ -ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma_{\alpha}^{0}$.

Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I}) = \bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski

If $\mathcal{I} = \mathcal{M}eager$ or $\mathcal{I} = \mathcal{N}ull$, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$.

A B > A B >

э

Let \mathcal{I} be a σ -ideal. $\mathcal{M}(\mathcal{I}) = \{A \in X \times X : \exists B \supset A, B \text{ Borel}, B_x \in \mathcal{I}\}$

 $\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ -ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma_{\alpha}^{0}$.

Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I}) = \bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski

If $\mathcal{I} = \mathcal{M}eager$ or $\mathcal{I} = \mathcal{N}ull$, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$.

伺 とう ほう うちょう

Let \mathcal{I} be a σ -ideal. $\mathcal{M}(\mathcal{I}) = \{A \in X \times X : \exists B \supset A, B \text{ Borel}, B_x \in \mathcal{I}\}$

 $\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ -ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma^{0}_{\alpha}$.

Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I}) = \bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski

If $\mathcal{I} = \mathcal{M}eager$ or $\mathcal{I} = \mathcal{N}ull$, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$.

通 と く ヨ と く ヨ と

Let $\mathcal{F} \subset X^X$. $Y \subset X^2$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^2$ such that $\{x : (x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

A family of functions $\mathcal{F} \subseteq X^X$ is *ubiquitous with respect to an ideal* \mathcal{I} (or \mathcal{I} -ubiquitous) if for every Borel function $g \colon X \to X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that f|B = g|B.

The family of continuous functions is a natural example of \mathcal{N} ull– and \mathcal{M} eager–ubiquitous family (Luzin Theorem and Nikodym Theorem).

On the other hand, there are families of Borel functions $f: [0,1) \rightarrow [0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to $\mathcal{N}ull$ nor to $\mathcal{M}eager$ ideals: the empty family, the constant functions, the linear functions, polynomials.

Let $\mathcal{F} \subset X^X$. $Y \subset X^2$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^2$ such that $\{x : (x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

A family of functions $\mathcal{F} \subseteq X^X$ is *ubiquitous with respect to an ideal* \mathcal{I} (or \mathcal{I} -ubiquitous) if for every Borel function $g: X \to X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that f|B = g|B.

The family of continuous functions is a natural example of \mathcal{N} ull– and \mathcal{M} eager–ubiquitous family (Luzin Theorem and Nikodym Theorem).

On the other hand, there are families of Borel functions $f: [0,1) \rightarrow [0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to $\mathcal{N}ull$ nor to $\mathcal{M}eager$ ideals: the empty family, the constant functions, the linear functions, polynomials.

Let $\mathcal{F} \subset X^X$. $Y \subset X^2$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^2$ such that $\{x : (x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

A family of functions $\mathcal{F} \subseteq X^X$ is *ubiquitous with respect to an ideal* \mathcal{I} (or \mathcal{I} -ubiquitous) if for every Borel function $g: X \to X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that f|B = g|B.

The family of continuous functions is a natural example of \mathcal{N} *ull*- and \mathcal{M} *eager*-ubiquitous family (Luzin Theorem and Nikodym Theorem).

On the other hand, there are families of Borel functions $f: [0,1) \rightarrow [0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to $\mathcal{N}ull$ nor to $\mathcal{M}eager$ ideals: the empty family, the constant functions, the linear functions, polynomials.

Let $\mathcal{F} \subset X^X$. $Y \subset X^2$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^2$ such that $\{x : (x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

A family of functions $\mathcal{F} \subseteq X^X$ is *ubiquitous with respect to an ideal* \mathcal{I} (or \mathcal{I} -ubiquitous) if for every Borel function $g: X \to X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that f|B = g|B.

The family of continuous functions is a natural example of \mathcal{N} *ull*- and \mathcal{M} *eager*-ubiquitous family (Luzin Theorem and Nikodym Theorem).

On the other hand, there are families of Borel functions $f \colon [0,1) \to [0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to $\mathcal{N}\textit{ull}$ nor to $\mathcal{M}\textit{eager}$ ideals: the empty family, the constant functions, the linear functions, polynomials.

Let X be a Polish group. Let \mathcal{I} be either the σ -ideal of meager subsets of X or a σ -ideal of null subsets of X with respect to a right-invariant σ -finite measure on X.

Theorem

Let $\mathcal{F} \subseteq X^X$ be a family of Borel functions which is not \mathcal{I} -ubiquitous. Assume that \mathcal{F} is left shift invariant, i.e. for any $f \in \mathcal{F}$ and $y \in X$ the function $x \mapsto y \cdot f(x)$ belongs to \mathcal{F} . Then $\mathcal{M}_{\alpha+2}(\mathcal{F},\mathcal{I}) \setminus \mathcal{M}_{\alpha}(\mathcal{I}) \neq \emptyset$ for every $3 \leq \alpha < \omega_1$.

Let X be a Polish group. Let \mathcal{I} be either the σ -ideal of meager subsets of X or a σ -ideal of null subsets of X with respect to a right-invariant σ -finite measure on X.

Theorem

Let $\mathcal{F} \subseteq X^X$ be a family of Borel functions which is not \mathcal{I} -ubiquitous. Assume that \mathcal{F} is left shift invariant, i.e. for any $f \in \mathcal{F}$ and $y \in X$ the function $x \mapsto y \cdot f(x)$ belongs to \mathcal{F} . Then $\mathcal{M}_{\alpha+2}(\mathcal{F}, \mathcal{I}) \setminus \mathcal{M}_{\alpha}(\mathcal{I}) \neq \emptyset$ for every $3 \leq \alpha < \omega_1$.

医下颌 医下颌

-

Theorem (Cichoń, Pawlikowski)

Assume \mathcal{I} is a σ -ideal of subsets of an uncountable Polish space X such that $X \notin \mathcal{I}$. For every $\alpha < \omega_1$ there is a Π^0_α set $A \subseteq X^2$ such that for every $M \in \mathcal{M}_\alpha(\mathcal{I})$ there is $x \in X$ such that $\emptyset \neq A_x \subseteq M_x^c$. If, additionally, \mathcal{I} is Σ^0_α -on- Π^0_α , then we can assume that $A_x^c \in \mathcal{I}$ for every $x \in \pi_1[A]$.

Theorem (Holický)

Suppose X is an uncountable Polish space. Let \mathcal{I} be a σ -ideal of subsets of X which is Σ_{α}^{0} -on- Π_{α}^{0} for some $2 \leq \alpha < \omega_{1}$ and which contains all singletons. Let $A \subseteq X^{2}$ be such that $A_{x} \notin \mathcal{I}$ for every $x \in \pi_{1}[A]$. If A is of class Σ_{α}^{0} , then there is a Σ_{α}^{0} -measurable uniformization of A.

伺 と く き と く き と

Theorem (Cichoń, Pawlikowski)

Assume \mathcal{I} is a σ -ideal of subsets of an uncountable Polish space X such that $X \notin \mathcal{I}$. For every $\alpha < \omega_1$ there is a Π^0_α set $A \subseteq X^2$ such that for every $M \in \mathcal{M}_\alpha(\mathcal{I})$ there is $x \in X$ such that $\emptyset \neq A_x \subseteq M_x^c$. If, additionally, \mathcal{I} is Σ^0_α -on- Π^0_α , then we can assume that $A_x^c \in \mathcal{I}$ for every $x \in \pi_1[A]$.

Theorem (Holický)

Suppose X is an uncountable Polish space. Let \mathcal{I} be a σ -ideal of subsets of X which is Σ_{α}^{0} -on- Π_{α}^{0} for some $2 \leq \alpha < \omega_{1}$ and which contains all singletons. Let $A \subseteq X^{2}$ be such that $A_{x} \notin \mathcal{I}$ for every $x \in \pi_{1}[A]$. If A is of class Σ_{α}^{0} , then there is a Σ_{α}^{0} -measurable uniformization of A.

向下 イヨト イヨト 三日

ideals $\mathcal{J}\otimes\mathcal{I}$

$\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\}\otimes\mathcal{I}.$

 $\mathcal{N}\mathit{ull}\otimes\mathcal{N}\mathit{ull},\,\mathcal{N}\mathit{ull}\otimes\mathcal{M}\mathit{eager}$ etc. have bases of bounded Borel complexity.

property (M)

We will say that an ideal \mathcal{J} of subsets of a Polish space X has property (M) if there is a Borel function $f: X \to [0,1]$ such that $f^{-1}[\{x\}] \notin \mathcal{J}$ for every $x \in [0,1]$.

Theorem

ideals $\mathcal{J}\otimes\mathcal{I}$

 $\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\}\otimes\mathcal{I}$.

 $\mathcal{N}\textit{ull}\otimes\mathcal{N}\textit{ull},\,\mathcal{N}\textit{ull}\otimes\mathcal{M}\textit{eager}$ etc. have bases of bounded Borel complexity.

property (M)

We will say that an ideal \mathcal{J} of subsets of a Polish space X has property (M) if there is a Borel function $f: X \to [0, 1]$ such that $f^{-1}[\{x\}] \notin \mathcal{J}$ for every $x \in [0, 1]$.

Theorem

ideals $\mathcal{J}\otimes\mathcal{I}$

 $\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\}\otimes\mathcal{I}$.

 $\mathcal{N}\textit{ull}\otimes\mathcal{N}\textit{ull},\,\mathcal{N}\textit{ull}\otimes\mathcal{M}\textit{eager}$ etc. have bases of bounded Borel complexity.

property (M)

We will say that an ideal \mathcal{J} of subsets of a Polish space X has property (M) if there is a Borel function $f: X \to [0, 1]$ such that $f^{-1}[\{x\}] \notin \mathcal{J}$ for every $x \in [0, 1]$.

Theorem

ideals $\mathcal{J}\otimes\mathcal{I}$

 $\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\}\otimes\mathcal{I}$.

 $\mathcal{N}\textit{ull}\otimes\mathcal{N}\textit{ull},\,\mathcal{N}\textit{ull}\otimes\mathcal{M}\textit{eager}$ etc. have bases of bounded Borel complexity.

property (M)

We will say that an ideal \mathcal{J} of subsets of a Polish space X has property (M) if there is a Borel function $f: X \to [0, 1]$ such that $f^{-1}[\{x\}] \notin \mathcal{J}$ for every $x \in [0, 1]$.

Theorem

Set theoretic properties

Proposition.

If \mathcal{I} is a σ -ideal of subsets of X such that $X \notin \mathcal{I}$ and $\mathcal{F} \subseteq X^X$, then $\mathcal{M}(\mathcal{F}, \mathcal{I})$ has property (M). Also, if a σ -ideal \mathcal{J} has property (M), then $\mathcal{J} \otimes \mathcal{I}$ has property (M).

Proposition.

If \mathcal{I} has the complex Borel base property, then $\operatorname{add}(\mathcal{I}) = \omega_1$.

Proposition.

If \mathcal{I} is a σ -ideal of subsets of X and $\mathcal{F} \subseteq X^X$, then (i) $\operatorname{cov}(\mathcal{M}(\mathcal{F},\mathcal{I})) = \operatorname{cov}(\mathcal{I})$ provided \mathcal{I} has a Borel base; (ii) $\operatorname{non}(\mathcal{M}(\mathcal{F},\mathcal{I})) = \operatorname{non}(\mathcal{I})$.

Set theoretic properties

Proposition.

If \mathcal{I} is a σ -ideal of subsets of X such that $X \notin \mathcal{I}$ and $\mathcal{F} \subseteq X^X$, then $\mathcal{M}(\mathcal{F}, \mathcal{I})$ has property (M). Also, if a σ -ideal \mathcal{J} has property (M), then $\mathcal{J} \otimes \mathcal{I}$ has property (M).

Proposition.

If \mathcal{I} has the complex Borel base property, then $\operatorname{add}(\mathcal{I}) = \omega_1$.

Proposition.

If \mathcal{I} is a σ -ideal of subsets of X and $\mathcal{F} \subseteq X^X$, then (i) $\operatorname{cov}(\mathcal{M}(\mathcal{F},\mathcal{I})) = \operatorname{cov}(\mathcal{I})$ provided \mathcal{I} has a Borel base; (ii) $\operatorname{non}(\mathcal{M}(\mathcal{F},\mathcal{I})) = \operatorname{non}(\mathcal{I})$.

Set theoretic properties

Proposition.

If \mathcal{I} is a σ -ideal of subsets of X such that $X \notin \mathcal{I}$ and $\mathcal{F} \subseteq X^X$, then $\mathcal{M}(\mathcal{F}, \mathcal{I})$ has property (M). Also, if a σ -ideal \mathcal{J} has property (M), then $\mathcal{J} \otimes \mathcal{I}$ has property (M).

Proposition.

If \mathcal{I} has the complex Borel base property, then $\operatorname{add}(\mathcal{I}) = \omega_1$.

Proposition.

If $\mathcal I$ is a σ -ideal of subsets of X and $\mathcal F \subseteq X^X$, then

(i)
$$\operatorname{cov}(\mathcal{M}(\mathcal{F},\mathcal{I})) = \operatorname{cov}(\mathcal{I})$$
 provided \mathcal{I} has a Borel base;

(ii)
$$\operatorname{non}(\mathcal{M}(\mathcal{F},\mathcal{I})) = \operatorname{non}(\mathcal{I}).$$