Ideals with bases of unbounded Borel complexity

Szymon Głạb, Piotr Borodulin-Nadzieja

Table of contents

(1) Definitions
(2) Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$
(3) ideals $\mathcal{J} \otimes \mathcal{I}$
(4) Set theoretic properties

$\mathcal{M}(\mathcal{I})$

Let \mathcal{I} be a σ-ideal. $\mathcal{M}(\mathcal{I})=\left\{A \in X \times X: \exists B \supset A, B\right.$ Borel, $\left.B_{x} \in \mathcal{I}\right\}$
> $\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ-ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma_{\alpha}^{0}$

> Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I})=\bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski
If $\mathcal{T}=$ Meager or $\mathcal{T}=\mathcal{N} u / /$, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$

$\mathcal{M}(\mathcal{I})$

Let \mathcal{I} be a σ-ideal. $\mathcal{M}(\mathcal{I})=\left\{A \in X \times X: \exists B \supset A, B\right.$ Borel, $\left.B_{x} \in \mathcal{I}\right\}$

$\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ-ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma_{\alpha}^{0}$.

Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I})=\bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski

If $\mathcal{I}=\mathcal{M e a g e r}$ or $\mathcal{I}=\mathcal{N} u l l$, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$

$\mathcal{M}(\mathcal{I})$

Let \mathcal{I} be a σ-ideal. $\mathcal{M}(\mathcal{I})=\left\{A \in X \times X: \exists B \supset A, B\right.$ Borel, $\left.B_{x} \in \mathcal{I}\right\}$
$\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ-ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma_{\alpha}^{0}$.

Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I})=\bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski

If $\mathcal{I}=\mathcal{M}$ eager or $\mathcal{I}=\mathcal{N}$ ull, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$.

$\mathcal{M}(\mathcal{I})$

Let \mathcal{I} be a σ-ideal. $\mathcal{M}(\mathcal{I})=\left\{A \in X \times X: \exists B \supset A, B\right.$ Borel, $\left.B_{x} \in \mathcal{I}\right\}$
$\mathcal{M}_{\alpha}(\mathcal{I})$ is a σ-ideal generated by $\mathcal{M}(\mathcal{I}) \cap \Sigma_{\alpha}^{0}$.

Since $\mathcal{M}(\mathcal{I})$ has a Borel base, then $\mathcal{M}(\mathcal{I})=\bigcup \mathcal{M}_{\alpha}(\mathcal{I})$.

Cichoń and Pawlikowski

If $\mathcal{I}=\mathcal{M}$ eager or $\mathcal{I}=\mathcal{N}$ ull, then $\mathcal{M}_{\alpha}(\mathcal{I}) \neq \mathcal{M}(\mathcal{I})$.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Let $\mathcal{F} \subset X^{X} . Y \subset X^{2}$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^{2}$ such that $\{x:(x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

> A family of functions $\mathcal{F} \subseteq X^{X}$ is ubiquitous with respect to an ideal \mathcal{I} (or \mathcal{I}-ubiquitous) if for every Borel function $g: X \rightarrow X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that $f|B=g| B$.

The family of continuous functions is a natural example of $\mathcal{N} u l l-$ and Meager-ubiquitous family (Luzin Theorem and Nikodym Theorem)

On the other hand, there are families of Borel functions $f:[0,1) \rightarrow[0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to \mathcal{N} ull nor to Meager ideals: the empty family, the constant functions, the linear functions, polynomials.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Let $\mathcal{F} \subset X^{X} . Y \subset X^{2}$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^{2}$ such that $\{x:(x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

A family of functions $\mathcal{F} \subseteq X^{X}$ is ubiquitous with respect to an ideal \mathcal{I} (or \mathcal{I}-ubiquitous) if for every Borel function $g: X \rightarrow X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that $f|B=g| B$.

> The family of continuous functions is a natural example of $\mathcal{N} u l l-$ and Meager-ubiquitous family (Luzin Theorem and Nikodym Theorem)

On the other hand, there are families of Borel functions $f:[0,1) \rightarrow[0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to \mathcal{N} ull nor to Meager ideals: the empty family, the constant functions, the linear functions, polynomials.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Let $\mathcal{F} \subset X^{X} . Y \subset X^{2}$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^{2}$ such that $\{x:(x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

A family of functions $\mathcal{F} \subseteq X^{X}$ is ubiquitous with respect to an ideal \mathcal{I} (or \mathcal{I}-ubiquitous) if for every Borel function $g: X \rightarrow X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that $f|B=g| B$.

The family of continuous functions is a natural example of $\mathcal{N} u l l-$ and Meager-ubiquitous family (Luzin Theorem and Nikodym Theorem).

On the other hand, there are families of Borel functions $f:[0,1) \rightarrow[0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to \mathcal{N} ull nor to Meager ideals: the empty family, the constant functions, the linear functions, polynomials.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Let $\mathcal{F} \subset X^{X} . Y \subset X^{2}$ belongs to $\mathcal{M}(\mathcal{F}, \mathcal{I})$ whenever $Y \in \mathcal{M}(\mathcal{I})$ and Y can be covered by a Borel set $B \subset X^{2}$ such that $\{x:(x, f(x)) \in B\} \in \mathcal{I}$ for every $f \in \mathcal{F}$.

A family of functions $\mathcal{F} \subseteq X^{X}$ is ubiquitous with respect to an ideal \mathcal{I} (or \mathcal{I}-ubiquitous) if for every Borel function $g: X \rightarrow X$ there is a Borel set $B \notin \mathcal{I}$ and a function $f \in \mathcal{F}$ such that $f|B=g| B$.

The family of continuous functions is a natural example of $\mathcal{N} u l l$ - and Meager-ubiquitous family (Luzin Theorem and Nikodym Theorem).

On the other hand, there are families of Borel functions $f:[0,1) \rightarrow[0,1)$ which are closed under the addition modulo 1 but are not ubiquitous neither with respect to $\mathcal{N} u l l$ nor to $\mathcal{M e a g e r}$ ideals: the empty family, the constant functions, the linear functions, polynomials.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Let X be a Polish group. Let \mathcal{I} be either the σ-ideal of meager subsets of X or a σ-ideal of null subsets of X with respect to a right-invariant σ-finite measure on X.

Theorem

Let $\mathcal{F} \subseteq X^{X}$ be a family of Borel functions which is not \mathcal{I}-ubiquitous
Assume that \mathcal{F} is left shift invariant, i.e. for any $f \in \mathcal{F}$ and $y \in X$ the function $x \mapsto y \cdot f(x)$ belongs to \mathcal{F}. Then $\mathcal{M}_{\alpha+2}(\mathcal{F}, \mathcal{I}) \backslash \mathcal{M}_{\alpha}(\mathcal{I}) \neq \emptyset$ for every $3 \leq \alpha<\omega_{1}$.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Let X be a Polish group. Let \mathcal{I} be either the σ-ideal of meager subsets of X or a σ-ideal of null subsets of X with respect to a right-invariant σ-finite measure on X.

Theorem

Let $\mathcal{F} \subseteq X^{X}$ be a family of Borel functions which is not \mathcal{I}-ubiquitous. Assume that \mathcal{F} is left shift invariant, i.e. for any $f \in \mathcal{F}$ and $y \in X$ the function $x \mapsto y \cdot f(x)$ belongs to \mathcal{F}. Then $\mathcal{M}_{\alpha+2}(\mathcal{F}, \mathcal{I}) \backslash \mathcal{M}_{\alpha}(\mathcal{I}) \neq \emptyset$ for every $3 \leq \alpha<\omega_{1}$.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Theorem (Cichoń, Pawlikowski)

Assume \mathcal{I} is a σ-ideal of subsets of an uncountable Polish space X such that $X \notin \mathcal{I}$. For every $\alpha<\omega_{1}$ there is a Π_{α}^{0} set $A \subseteq X^{2}$ such that for every $M \in \mathcal{M}_{\alpha}(\mathcal{I})$ there is $x \in X$ such that $\emptyset \neq A_{x} \subseteq M_{x}^{c}$. If, additionally, \mathcal{I} is Σ_{α}^{0}-on- Π_{α}^{0}, then we can assume that $A_{x}^{c} \in \mathcal{I}$ for every $x \in \pi_{1}[A]$.

Ideals $\mathcal{M}(\mathcal{F}, \mathcal{I})$

Theorem (Cichoń, Pawlikowski)

Assume \mathcal{I} is a σ-ideal of subsets of an uncountable Polish space X such that $X \notin \mathcal{I}$. For every $\alpha<\omega_{1}$ there is a Π_{α}^{0} set $A \subseteq X^{2}$ such that for every $M \in \mathcal{M}_{\alpha}(\mathcal{I})$ there is $x \in X$ such that $\emptyset \neq A_{x} \subseteq M_{x}^{c}$. If, additionally, \mathcal{I} is Σ_{α}^{0}-on- Π_{α}^{0}, then we can assume that $A_{x}^{c} \in \mathcal{I}$ for every $x \in \pi_{1}[A]$.

Theorem (Holický)

Suppose X is an uncountable Polish space. Let \mathcal{I} be a σ-ideal of subsets of X which is Σ_{α}^{0}-on- Π_{α}^{0} for some $2 \leq \alpha<\omega_{1}$ and which contains all singletons. Let $A \subseteq X^{2}$ be such that $A_{x} \notin \mathcal{I}$ for every $x \in \pi_{1}[A]$. If A is of class Σ_{α}^{0}, then there is a Σ_{α}^{0}-measurable uniformization of A.

ideals $\mathcal{J} \otimes \mathcal{I}$

$\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\} \otimes \mathcal{I}$.

$\mathcal{N} u l l \otimes \mathcal{N} u l l, \mathcal{N} u l l \otimes \mathcal{M e a g e r}$ etc. have bases of bounded Borel complexity.

property (M)

We will say that an ideal \mathcal{J} of subsets of a Polish space X has property (M) if there is a Borel function $f: X \rightarrow[0,1]$ such that $f^{-1}[\{x\}] \notin \mathcal{J}$ for every $x \in[0,1]$

Theorem

Let \mathcal{I} be a σ-ideal of subsets of an uncountable Polish space X. Suppose \mathcal{I} has a Borel base, is Σ_{α}^{0}-on- Π_{α}^{0} for each $\alpha<\omega_{1}$ and contains all singletons. If a σ-ideal \mathcal{J} of subsets of X has property (M) then there is $\beta<\omega_{1}$ such that $(\mathcal{J} \otimes \mathcal{I})_{\alpha} \subsetneq(\mathcal{J} \otimes \mathcal{I})_{\alpha+2}$ for each $\alpha>\beta$.

ideals $\mathcal{J} \otimes \mathcal{I}$

$\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\} \otimes \mathcal{I}$.

$\mathcal{N} u l l \otimes \mathcal{N} u l l, \mathcal{N} u l l \otimes \mathcal{M e}$ eager etc. have bases of bounded Borel complexity.

```
property (M)
We will say that an ideal }\mathcal{J}\mathrm{ of subsets of a Polish space }X\mathrm{ has property
(M) if there is a Borel function }f:X->[0,1] such that \mp@subsup{f}{}{-1}[{x}]\not\in\mathcal{J}\mathrm{ for
every }x\in[0,1
```


Theorem

Let \mathcal{T} he $a \sigma$-ideal of subsets of an uncountable Polish space X. Suppose I has a Borel base, is $\Sigma_{\alpha}^{0}-$ on- Π_{α}^{0} for each $\alpha<\omega_{1}$ and contains all singletons. If a σ-ideal \mathcal{J} of subsets of X has property (M) then there is $\beta<\omega_{1}$ such that $(\mathcal{J} \otimes \mathcal{I})_{\alpha} \subsetneq(\mathcal{J} \otimes \mathcal{I})_{\alpha+2}$ for each α

ideals $\mathcal{J} \otimes \mathcal{I}$

$\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\} \otimes \mathcal{I}$.
$\mathcal{N} u l l \otimes \mathcal{N} u l l, \mathcal{N}$ ull $\otimes \mathcal{M}$ eager etc. have bases of bounded Borel
complexity.

property (M)

We will say that an ideal \mathcal{J} of subsets of a Polish space X has property (M) if there is a Borel function $f: X \rightarrow[0,1]$ such that $f^{-1}[\{x\}] \notin \mathcal{J}$ for every $x \in[0,1]$.

Theorem

Let \mathcal{I} be a σ-ideal of subsets of an uncountable Polish space X. Suppose \mathcal{I} has a Borel base, is Σ_{α}^{0}-on- Π_{α}^{0} for each $\alpha<\omega_{1}$ and contains all singletons. If a σ-ideal \mathcal{J} of subsets of X has property (M) then there is $\beta<\omega_{1}$ such that $(\mathcal{J} \otimes \mathcal{I})_{\alpha} \subsetneq(\mathcal{J} \otimes \mathcal{I})_{\alpha+2}$ for each α

ideals $\mathcal{J} \otimes \mathcal{I}$

$\mathcal{M}(\mathcal{I})$ can be seen as $\{\emptyset\} \otimes \mathcal{I}$.
$\mathcal{N} u l l \otimes \mathcal{N} u l l, \mathcal{N} u l l \otimes \mathcal{M}$ eager etc. have bases of bounded Borel complexity.

property (M)

We will say that an ideal \mathcal{J} of subsets of a Polish space X has property (M) if there is a Borel function $f: X \rightarrow[0,1]$ such that $f^{-1}[\{x\}] \notin \mathcal{J}$ for every $x \in[0,1]$.

Theorem

Let \mathcal{I} be a σ-ideal of subsets of an uncountable Polish space X. Suppose \mathcal{I} has a Borel base, is Σ_{α}^{0}-on- Π_{α}^{0} for each $\alpha<\omega_{1}$ and contains all singletons. If a σ-ideal \mathcal{J} of subsets of X has property (M) then there is $\beta<\omega_{1}$ such that $(\mathcal{J} \otimes \mathcal{I})_{\alpha} \subsetneq(\mathcal{J} \otimes \mathcal{I})_{\alpha+2}$ for each $\alpha>\beta$.

Set theoretic properties

Proposition.

If \mathcal{I} is a σ-ideal of subsets of X such that $X \notin \mathcal{I}$ and $\mathcal{F} \subseteq X^{X}$, then $\mathcal{M}(\mathcal{F}, \mathcal{I})$ has property (M). Also, if a σ-ideal \mathcal{J} has property (M), then $\mathcal{J} \otimes \mathcal{I}$ has property (M).

Proposition.
 If \mathcal{I} has the complex Borel base property, then $\operatorname{add}(\mathcal{I})=\omega_{1}$

Proposition.
If \mathcal{T} is a σ-ideal of subsets of X and $\mathcal{F} \subseteq X^{X}$, then
(i) $\operatorname{cov}(\mathcal{M}(\mathcal{F}, \mathcal{I}))=\operatorname{cov}(\mathcal{I})$ provided \mathcal{I} has a Borel base;
(ii) $\operatorname{non}(\mathcal{M}(\mathcal{F}, \mathcal{I}))=\operatorname{non}(\mathcal{I})$.

Set theoretic properties

Proposition.

If \mathcal{I} is a σ-ideal of subsets of X such that $X \notin \mathcal{I}$ and $\mathcal{F} \subseteq X^{X}$, then $\mathcal{M}(\mathcal{F}, \mathcal{I})$ has property (M). Also, if a σ-ideal \mathcal{J} has property (M), then $\mathcal{J} \otimes \mathcal{I}$ has property (M).

Proposition.

If \mathcal{I} has the complex Borel base property, then $\operatorname{add}(\mathcal{I})=\omega_{1}$.

[^0]
Set theoretic properties

Proposition.

If \mathcal{I} is a σ-ideal of subsets of X such that $X \notin \mathcal{I}$ and $\mathcal{F} \subseteq X^{X}$, then $\mathcal{M}(\mathcal{F}, \mathcal{I})$ has property (M). Also, if a σ-ideal \mathcal{J} has property (M), then $\mathcal{J} \otimes \mathcal{I}$ has property (M).

Proposition.

If \mathcal{I} has the complex Borel base property, then $\operatorname{add}(\mathcal{I})=\omega_{1}$.

Proposition.

If \mathcal{I} is a σ-ideal of subsets of X and $\mathcal{F} \subseteq X^{X}$, then
(i) $\operatorname{cov}(\mathcal{M}(\mathcal{F}, \mathcal{I}))=\operatorname{cov}(\mathcal{I})$ provided \mathcal{I} has a Borel base;
(ii) $\operatorname{non}(\mathcal{M}(\mathcal{F}, \mathcal{I}))=\operatorname{non}(\mathcal{I})$.

[^0]: Proposition.
 If \mathcal{I} is a σ-ideal of subsets of X and $\mathcal{F} \subseteq X^{X}$, then
 (i) $\operatorname{cov}(\mathcal{M}(\mathcal{F}, \mathcal{I}))=\operatorname{cov}(\mathcal{I})$ provided \mathcal{I} has a Borel base;
 (ii) $\operatorname{non}(\mathcal{M}(\mathcal{F}, \mathcal{I}))=\operatorname{non}(\mathcal{I})$

